Important Constrictive Pericarditis in a Patient with Schistosomiasis: A Case Report

Djair Brindeiro Filho,¹ José Maria Del Castillo,¹ Fábio Antonio Amando Granja²
Escola de Ecografia de Pernambuco,¹ Recife, PE – Brazil
Hospital de Clínicas da UFPE,² Recife, PE – Brazil

Introduction

Schistosomiasis mansoni (SM) is one of the most common causes of pulmonary hypertension and is often associated with the hepatosplenic form of the disease. However, constrictive pericarditis (CP) is not cited in the medical literature as a consequence of SM.¹,² One single case report, published in 1979, associating CP with schistosomiasis, presented the etiologic agent of Schistosoma haematobium.³ The present study described a rare case of CP in a patient with chronic hepatosplenic SM, with a significant improvement in the parameters of ventricular filling and myocardial deformation after surgery, illustrating the importance of the echocardiogram in the detection of complications caused by this disease.

Case report

A 47-year-old, female patient, diagnosed with schistosomiasis 10 years ago, presented signs of right heart failure (jugular inurigation, hepatomegaly, edema of the lower limbs) and left heart failure (exhaustion with minimum/maximum effort, hypotension). The precordium examination showed no abnormalities and upon auscultation of the heart, one could hear a third sound and a discrete systolic murmur on the left sternal border.

The preliminary echocardiogram showed a major biatrial dilation, signs of mild pulmonary hypertension (41 mmHg), major thickening of the pericardium with no stroke, and the interventricular septum with an altered movement, with a “septal bounce” pattern (Figure 1). The spectral Doppler showed a mitral flow with a left ventricular restrictive pattern, and the Tissue Doppler (TD) of the mitral ring with a septal-lateral inversion in an Annulus reversus pattern (Figure 2). The speed of left ventricle (LV) outflow was above 100 cm/s and the LV’s longitudinal global strain (LGS) was discretely reduced (-14.7%), with an accentuated decrease in the inferolateral and anterolateral walls (Figure 3). Taking these data into account, the CP diagnostic hypothesis was conducted, together with x-ray. A partial surgical pericardiectomy was recommended, revealing an important calcification and adherence of the pericardial layers; the material was sent to the pathological anatomy department (Figure 4).

Eight months after the surgery, there was a clear improvement in the systolic function and the LV filling pattern, diminishing the atrial volumes and increasing the speed of the e´ wave of the lateral ring in relation to the speed of the LV, which increased to -20.7% strain, with the disappearance of the alterations in the inferolateral and anterolateral walls (Figure 5).

Discussion

Chronic CP is associated with a wide range of possible causes. The disease develops in an insidious manner and, in many cases, the etiology remains undefined.⁴ The diagnosis of CP is based on symptoms and signs of heart failure due to the constriction of the pericardium associated with one or more imaging methods. Transthoracic echocardiography (TTE) is recommended in all patients suspected of CP.⁵ Schistosomiasis, a tropical endemic parasitosis, can lead to pulmonary hypertension due to the occlusion of the pulmonary arterioles by the SM eggs. The myocardial and pericardial involvement of SM species is rare and can occur due to the accumulation of SM eggs, which induce a local granulomatous response.⁶ In the only case published in the medical literature,⁷ the histopathological study of the pericardium showed a fibrous thickening with an increase in the connective tissue and identified the presence of Schistosoma haematobium eggs. In the present case, the ananatomopathological study of pericardial fragments showed fibrous connective tissue, showing extensive dystrophic calcification, but no SM eggs were identified. Two possibilities can be suggested: the absence of eggs in the analyzed fragments and/or the disintegration of the eggs. In any case, the etiological possibility cannot be discarded, since there was no medical history or other concomitant disease that could be attributed as a cause of CP. The TTE identified various parameters of CP, which normalized in the exams performed about eight months after the excellent result of the surgical procedure (Figure 5). The analysis of the myocardial strain can aid in providing a more precise detection of the adherence of the pericardium to the myocardium along the free wall of the LV, aiding in the diagnosis of CP, as illustrated the present case.

References

1. Schistosomiasis mansoni (SM) is one of the most common causes of pulmonary hypertension and is often associated with the hepatosplenic form of the disease. However, constrictive pericarditis (CP) is not cited in the medical literature as a consequence of SM.¹,² One single case report, published in 1979, associating CP with schistosomiasis, presented the etiologic agent of Schistosoma haematobium.³ The present study described a rare case of CP in a patient with chronic hepatosplenic SM, with a significant improvement in the parameters of ventricular filling and myocardial deformation after surgery, illustrating the importance of the echocardiogram in the detection of complications caused by this disease.

2. Case report

A 47-year-old, female patient, diagnosed with schistosomiasis 10 years ago, presented signs of right heart failure (jugular inurigation, hepatomegaly, edema of the lower limbs) and left heart failure (exhaustion with minimum/maximum effort, hypotension). The precordium examination showed no abnormalities and upon auscultation of the heart, one could hear a third sound and a discrete systolic murmur on the left sternal border.

The preliminary echocardiogram showed a major biatrial dilation, signs of mild pulmonary hypertension (41 mmHg), major thickening of the pericardium with no stroke, and the interventricular septum with an altered movement, with a “septal bounce” pattern (Figure 1). The spectral Doppler showed a mitral flow with a left ventricular restrictive pattern, and the Tissue Doppler (TD) of the mitral ring with a septal-lateral inversion in an Annulus reversus pattern (Figure 2). The speed of left ventricle (LV) outflow was above 100 cm/s and the LV’s longitudinal global strain (LGS) was discretely reduced (-14.7%), with an accentuated decrease in the inferolateral and anterolateral walls (Figure 3). Taking these data into account, the CP diagnostic hypothesis was conducted, together with x-ray. A partial surgical pericardiectomy was recommended, revealing an important calcification and adherence of the pericardial layers; the material was sent to the pathological anatomy department (Figure 4).

Eight months after the surgery, there was a clear improvement in the systolic function and the LV filling pattern, diminishing the atrial volumes and increasing the speed of the e´ wave of the lateral ring in relation to the speed of the LV, which increased to -20.7% strain, with the disappearance of the alterations in the inferolateral and anterolateral walls (Figure 5).

Discussion

Chronic CP is associated with a wide range of possible causes. The disease develops in an insidious manner and, in many cases, the etiology remains undefined.⁴ The diagnosis of CP is based on symptoms and signs of heart failure due to the constriction of the pericardium associated with one or more imaging methods. Transthoracic echocardiography (TTE) is recommended in all patients suspected of CP.⁵ Schistosomiasis, a tropical endemic parasitosis, can lead to pulmonary hypertension due to the occlusion of the pulmonary arterioles by the SM eggs. The myocardial and pericardial involvement of SM species is rare and can occur due to the accumulation of SM eggs, which induce a local granulomatous response.⁶ In the only case published in the medical literature,⁷ the histopathological study of the pericardium showed a fibrous thickening with an increase in the connective tissue and identified the presence of Schistosoma haematobium eggs. In the present case, the ananatomopathological study of pericardial fragments showed fibrous connective tissue, showing extensive dystrophic calcification, but no SM eggs were identified. Two possibilities can be suggested: the absence of eggs in the analyzed fragments and/or the disintegration of the eggs. In any case, the etiological possibility cannot be discarded, since there was no medical history or other concomitant disease that could be attributed as a cause of CP. The TTE identified various parameters of CP, which normalized in the exams performed about eight months after the excellent result of the surgical procedure (Figure 5). The analysis of the myocardial strain can aid in providing a more precise detection of the adherence of the pericardium to the myocardium along the free wall of the LV, aiding in the diagnosis of CP, as illustrated the present case.

Keywords

Constrictive pericarditis; schistosomiasis; echocardiography; strain; pericardiectomy

Mailing Address: Djair Brindeiro Filho
E-mail: brindeirofilho@gmail.com

Manuscript received January 1, 2023; revised February 10, 2023; accepted March 9, 2023

Editor responsible for the review: Daniela do Carmo Rassi Frota

DOI: https://doi.org/10.36660/abcimg.2023378i
Case Report

Constrictive pericarditis and schistosomiasis

Figure 1 – Eco 2D 4C showing the dilation of the atriums and tricuspid regurgitation; B) Estimation of pulmonary systolic blood pressure using the continuous Doppler; C) Mode M “septal bounce” and pericardial thickening. PSAP: Pulmonary Systolic Arterial Pressure.

Figure 2 – Mitral flow with restrictive pattern (Left); TD showing lateral E_´ < septal E_´ speed (Right).

Figure 3 – Left: Colored Mode M; Speed of outflow with 220 cm/s (arrow photo); Right: LGS, 14.8% (arrow photo) with evident decrease in the inferolateral and anterolateral walls.
Case Report

Figure 4 – Intense pericardial thickening observed in the chest X-ray (left) and during surgery (right)

Figure 5 – Above (TD). Normalization of the speed of the lateral ring (lateral ring E’ wave > septal). Below (LGS). Normalization of the deformity in the inferolateral and anterolateral walls.
Author Contributions
Conception and design of the research and acquisition of data Brindeiro Filho D, Granja FAA; analysis and interpretation of the data Brindeiro Filho D, Del Castillo JM; writing of the manuscript Brindeiro Filho D; critical revision of the manuscript for intellectual content Del Castillo JM, Granja FAA.

Potential Conflict of Interest
No potential conflict of interest relevant to this article was reported.

References

Sources of funding
There were no external funding sources for this study.

Study Association
This study is not associated with any thesis or dissertation work.

Ethics Approval and Consent to Participate
This article does not contain any studies with human participants or animals performed by any of the authors.